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1. Algebra and quantifiers
Let us start by recalling the language in which we will, mostly, be working:

Definition 1.1 (The three sorted language): Let Ly 1 be the language consisting of three sorts K,
k and I' .. On K and k we have the ring language and on I the ordered group language with an
additional constant co. Finally, we also have a map val : K — I'o, and a map v : K? — k.

Any valued field K can be made into a £y, p-structure by interpreting K as K, k as the residue
field O /My and I' as the value group K*/O% u {co}. The map val is interpreted as the
valuation and r(a, b) = res(a/b) if a/b € O and 0 otherwise. We denote by ACVF the £y -
theory of algebraically closed non trivially valued fields. Recall that if K is an algebraically
closed valued field, k is algebraically closed and I is divisble.

The first result we want to prove is:

Theorem 1.2 (Robinson, 1956): The theory ACVF eliminates quantifiers.

A crucial element of the proofis the study of certain valued field extensions. Let us start with
the purely residual ones. By convention the polynomial 0 has degree +co and the minimal
polynomial of transcendental elements is 0. Let M = ACVF and A < M. Assume that K(A)
and k(A) are fields.

Lemma 1.3 (Purely residual 1-types): Pick any o € k(M). Let P € O(A/X) be an exact lifting
of its minimal polynomial over res(K(A)).
1. ForeveryQ =Y, X", R e K(A)[X], with degree smaller than P, and every a € res™ (a):
e val(Q(a)) = min; val(g;) # oo;
+ 1(Q(a), R(b)) = 1(qiy. 7o )res(Qo) ()res(Ro) (@)™, where Q = g, Qo, B = 75, Ro
and val(g;,) and val(r;j, ) are minimal.
2. There exists a € K(M) with res(a) = cand P(a) = 0.
3. Such an a is uniquely determined up to L-isomorphism by P and the minimal polynomial
R e k(A)[X] of aover k(A): forevery N = ACVF, L-embedding f : A — N, every root
a € K(M) of P and every root b € K(N) of f(P), if res(a) is a root of R and res(b) is a
root of f(R), then f can be extended by sending a to b.
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Proof . Let ig be such that val(g;,) is minimal. Write @ = ¢;,Qo. Then res(Qo) # 0. By
minimality of P, res(Qo(a)) = res(Qo)(a) # 0 and hence val(Qo(a)) = 0. It follows
that val(Q(a)) = val(g,) = min;val(g;). Similarly res(Ryp(a)) = res(Ro)(a) # 0. It fol-
lows that Q(a)/R(a) € O if and only if ¢;,/7;, € O and, in that case, res(Q(a)/R(a)) =
ves(gio 3, )1es(Qo(a) Jres(Ro(a)).

Let P = c[];(X - ¢e;), where c € O;. Since O is integrally closed, we have e; € O for all j.
For any a € res™! (), res(P)(c) =res(P(a)) = res(c) [1;res(a) —res(e;) = 0. It follows that
there exists an j such that res(a) —res(e;) = 0.

Finally, let C' be the structure generated by Aa and g : C' - N extend f by sending a to
b. Note that by 1, P is the minimal polynomial of a over K(A) and f(P) is the minimal
polynomial of b over f(K(A)). So gl is a ring homomorphism. Note also that for any Q =
¥ ¢ X" € K(A)[X] with degree smaller than P, by 1, we have val(Q(a)) = min; val(g;) =
min; val(f(g;)) = val(f(Q)(b)). Similarly, g is compatible with r. Note also that, by 1,
I'e(C) € T'ww(A) — so g is compatible with all the structure on this sort — and k(C) ¢
k(A)(«). Since the minimal polynomial of g(«) is the image by f of the minimal polyno-
mial of «, g|, is a ring homomorphism. ]

We continue with purely ramified extensions:

Lemma 1.4 (Purely ramified 1-types): Pickany~ € I'(M). Let nbeitsorderinT'(M)/val(K(A)).
1. ForeveryQ =Y, ¢; X", R e K(A)[X] with degree smaller than n and every a € val™* (v):
» val(Q(a)) = min;(val(g;) + i) and the minimum is attained only once;
e 1(Q(a),R(a)) = iy=jor(giy, j, ), where val(g;,) and val(r;,) are minimal.
2. Forany c € K(A) such that nvy = val(c), there exists a e K(M ) withval(a) = yand a™ = c.
3. Such an ais uniquely determined, up to L-isomorphism, by the order m of vinT'(M)/T'(A),
the order n of vin T'(M)/T'(A), m~ € T'(A), a choice of ¢ € K(A) such that val(c) = n~,
and, when m = oo, by theset D := {0 € I'(A) : 0 < v}: forevery N & ACVF, L-embedding
f+ A — N, every n-th root a € K(M) of c and every n-th root b € K(N) of f(c), if
mval(a) = my, mval(b) = f(m~) and, when m = oo, for all § € T'(A), val(a) > § if and
only if € D if and only if val(b) > f(0), then f can be extended by sending a to b.

Proof . We always have val(Q(a)) = val(¥;(gia’)) > min;val(g;a’) = min; val(g;) + 7. If
the inegality were strict, there would exist i < j < n such that val(g;a’) = val(gja’), i.e.
(j —i)val(a) = val(g;) — val(g;) € val(A), contradicting the minimality of n. We have also
proved that all val(g;a®) = val(g;)+i7, in particular the minimum, must be distinct. It follows
that res(Q(a)/gi,a™) = 1. Note also that val(Q(a)) - val(R(a)) = 0 if and only if val(g;,) -
val(rj,) + (40— jo)7y = 0. Since |ig — jo| < n, this s, in turn, equivalent to iy = jo and val(g;,) =
val(r;,). In that case, res(Q(a)/R(a)) = res(giya™,7j,a7) = 1(giy, 5y )-

Now assume n < +oo. For any a with a” = ¢, we have nval(a) = val(c) = ny and hence
val(a) = 1.

Finally, let C' be the structure generated by Aa and g : C' - N extend f by sending a to b. By
1, the minimal polynomial of a over K(A) is X" — ¢ and the minimal polynomial of b over
f(K(A))is X™ — f(c). So g is compatible with the ring structure on K. The computations
in 1 indicate that g is compatible with val and r. Finally, k(C') ¢ k(A) so g is compatible
with the structure on k. Also, I'(C') € I'(A) + Zval(a). Since the order of val(a) over I'(A)
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and the order of val(b) over f(I'(A)) are equal, g is compatible with the group structure
on . If m < oo, forall § € I'(A), § < val(a) if and only if md < mval(a) if and only
f(md) < f(mval(a)) if and only if f(0) < val(b), so g is compatible with the order on I's.
If m = oo, we also have § < val(a) if and only if f(0) < val(b), by hypothesis, so g is also
compatible with the order on I'w. ]

And finally, we deal with immediate extensions. However, we first need to introduce the
notion of pseudo-convergence:

Definition 1.5: Let (a;);c; be a sequence of elements in some valued field K — with no maximal
element.
1. We say that the sequence (a;); is pseudo-Cauchy if, for i < j < k € I sufficiently large,
val(ag — aj) > val(ay — a;).
2. We say that [ is a pseudo-limit of the sequence a; — and we write a; ~ [, or | € plim; a; —
if, fori < j € I sufficiently large, val(l - a;) > val(l — a;).

Also, to make the computations shorter — and hopefully more comprehensible — we intro-
duce the concept of leading terms. It is a map that packages together the valuation and the
residue map while still having the nice properties that make valuative computations work.

Definition 1.6 (Leading terms): Let K be a valued field. We define the group of leading terms
RV = K*[(1 + 0Mg). The projection is denoted rv : K* — RVy.. We also define RV :=
RV 1 {0} and we set rv(0) = 0.

Since 1 + My < O, the valuation factorizes through rv and we have the following short
exact sequence of groups:
ki - RVg - T'k.

Furthermore, the addition induces a kg -vector space structure on every fiber of the map
val : RV — I'k; formally, we consider that 0 € RV is an element of every fiber and any
time val(a + b) > min(val(a), val(b)), we set rv(a) +rv(b) = 0.

The main trick to compute leading terms is the following generalization of the fact thatin a
valuative setting all triangles are isosceles.

Lemma1.7: Let K be a valued field and a,b,c € K be such that val(a - b) > val(a — ¢), then
rv(a—c) =1v(b-c).

Proof .We have (b-c)/(a—c)=1+(b-a)/(a—c)el+Mk. ]

Lemma1.8: Let M = ACVF, A < K(M) and (a;); € A be pseudo-Cauchy. Let P € A[ X ] and
ce A. Then:

o if thereis a root of P in plim; a;, then P(a;) ~ 0;

« otherwise, for any a € plim,; a; and any sufficiently large i, rv(P(a)) = rv(P(a;)).
Proof . Let P = c]];(X —ej)and Jo = {j : e; € plim; a; }. Let ig be sufficiently large such that
forall j ¢ Jo, val(e; — aiy) < val(a;, — ay,) for some iy < ig. Note that, since a; is Cauchy,
for every j ¢ Jy and a € K(M) such that val(a — a;,) > val(a;, — a;,) — in particular if
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a € plim; g; orif a = a; for any ¢ > ig — rv(a; — €j) = rv(a;, — e;). 1t follows that if Jy = &,
rv(P(a)) =rv(P(ai,))-

If Jo # @, forall ig < i < [, val(P(a;)) = val(c) [1jey, val(a; — €;) [Tjes, val(ai, —€j) >
val(c) e, val(a; — €;) ¢ val(a;, —€j) = val(P(a;)). Soval(P(a;)) ~ 0. O

Corollary1.9 (Immediate 1-types): Let M = ACVF, A < M and (a;); € A be pseudo-Cauchy.
Let P € K(A)[X | have minimal degree among those polynomials such that P(a;) ~ 0; or P = 0
if such a polynomial does not exist.
1. Forevery QQ € K(A)[X | with degree smaller than P, every a € plim, a; and every sufficiently
large i,

rv(Q(a)) = rv(Q(ai)).

2. If P # 0, there exist a € K(M) with a; ~ a and P(a) = 0.

3. For all P, such an a is uniquely determined, up to isomorphism, by the sequence of the a;
and P: forevery N & ACVF, L-embedding f : A — N,root a € K(M) and root b € K(N)
of f(P), ifa; ~ aand f(a;) ~ b, then f can be extended by sending a to b.

Proof . By minimality of P, Q)(a;) does not pseudo-converge to 0. It follows, by Lemma (1.8),
that val(Q(a)) = val(Q(a;)) for sufficiently large i. Similarly, by Lemma (1.8), since P(a;) ~
0, one of the roots of P must be a pseudo-limit of the a;.

Let C be the structure generated by Aa and and g : C' — N extend f by sending a to b. The
computations in 1, show that a and b have the same minimal (up to f) over K(A) and that
(Q(a)) = v(QaN)v(f(Q(a))) = v(F(@Q(f(a))) = tv(F(Q)(b)). Since val(c) -
val(rv(c)) and (e, d) = 6va1(c)>va1(d)rv(c)rv(d)’l, we see that g is compatible with val and r
and that ', (C) € ' (A) and k(C) < k(A). i

Before we prove the elimination of quantifiers in ACVF, let me recall my favorite quantifier
elimination test:

Proposition 1.10 (Schoenfield, 1971): Let T' be some L-theory. The following are equivalent:
1. forevery M,N = T, where N is |M|*-saturated and every A < M, every L-embedding
f A — N can be extended to an L-embedding M — N.
2. T eliminates quantifiers.

Proof (Theorem (1.2)). Let M, N £ ACVF, A< M and f: A - N an L-embedding. Assume
N is |M|"-saturated. Our goal is to extend f step by step by using the cases we studied above.

First note that f has a (unique) extension to AuFrac(K(A))uFrac(k(A)), so we may always
assume that K(A) and k(A) are fields.

Claim r.11 (lifting k): Pick any o € k(M ), then f can be extended to some C' < M, with « €
res(K(C)).

Proof . Let R € k(A)[ X ] be the minimal polynomial of « over k(A) and P be an exact lifting
of the minimal polynomial of v over res(K(A)). Let 8 € k(IN) be aroot of f(R) —if R =0,
by saturation of N, we may assume /3 transcendental over f(k(A)). By Lemma(1.3).2, we
find aroot a of Pin K(M) withres(a) = aand aroot b of f(P) in K(N) withres(b) = f(«).
We now apply Lemma (1.3).3. O
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Claim 1.12 (lifting I'): Pick any v € k(M ), then f can be extended to some C < M, with v €
val(K(C)).

Proof . Let m be the order of v in I'(M)/T'(A) and n its order in T'(M) /val(K(A)). Let § €
K(N) be such that § = f(y™) — if m = +o0, by saturation of N, we can find § such that
d < f(e) ifand only if v < ¢, for every € € I'i(A). By Lemma (1.4).2, we find an n-th root a
of cin K(M) with val(a) = = and an n-th root b of f(¢) in K(M) with val(b) = f(7). We
conclude with Lemma (1.4).3. O

Applying the those claims repetitively, we may assume that k(M) c res(K(A)) andT'(M) <
val(K(A)). In particular, K(A) < K(M) is an immediate extension and M \ A < K.

Claim 1.13 (immediate extensions): Let (a;); € K(A) be some pseudo-Cauchy sequence with a
pseudo limit in K(M ). Then f can be extended to some C' < M containing a pseudo-limit of the
a;.

Proof . Let P € K(A)[X] be minimal such that P(a;) ~ 0. If P # 0, by Corollary (1.9).2 we
find a € K(M) aroot of P with a; ~ aand b € K(IN) aroot of f(P) with f(a;) ~b. If P=0
take any a € plim; a;. By saturation of N, we also find b € K(N) with f(a;) ~ b. Now apply
Corollary (1.9).3. O

Applying this new claim repetitively, we may assume that every pseudo-Cauchy sequence of
elements in K(A) with a limit in K(M) has a pseudo-limit in K(A).

Claimr.14: K(M) c K(A).

Proof . Pick some a € K(M). For any e € K(A), since K(A) < K(A)(a) is immediate, there
is c e K(A) such thatrv(a - e) =rv(c), i.e. val(a — (e + ¢)) > val(a — ). Note thatif e # a,
we may assume ¢ # a. It follows that, by (transfinite) induction, we can build a maximal
pseudo-Cauchy sequence a; € K(A) which pseudo-converges to a € K(M ). Let c e K(A) be
a pseudo-limit of the a;. If ¢ # a, the sequence (a;) is not maximal. So a = ¢ € K(A). O

We have therefore extended f to the whole of M. By Proposition (1.10), ACVF eliminates
quantifiers. ]

2. Definable sets and swiss cheeses

We will now derive of number of properties of definable set in ACVF from quantifier elim-
ination. We start by giving a classification of its completions. For all p and ¢ prime or 0, let
ACVF, , be the theory of algebraically closed non trivially valued fields with characteristic p
and residue characteristic ¢. Note that if p > 0, then we must have ¢ = p.

Proposition 2.1: For every p and g, ACVF), ; is complete.

Proof . By quantifier elimination, it suffices to find a common substructure to any two models
of ACVF,,. If ¢ = p > 0, the trivially valued field F,, embeds (uniquely) in any model of
ACVF, ;. If ¢ = p = 0, the trivially valued field Q embeds (uniquely) in any model of ACVFy o.
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Finally, the field Q with the p-adic valuation embeds (uniquely) in every model of ACVFy ,,.
]

Let us now give a complete description of 1-types over models. We consider points to be
closed balls of radius +o0, and the whole field to be an open ball of radius —oo.

Definition 2.2: Let M = ACVF, A ¢ K(M) and B = (b;); a chain of nested balls in A. An
element a € M is said to be generic in B over A if:

e a € b, forevery i;

o for every ball b of Awith b c b; foralli, a ¢b.
We write np| 4 for the — a priori partial — type of generics of B over A.

Lemma2.3:Let M = ACVF, A= A* c K(M)and a € K(M). Let B = {bballin A : a € b}.
Then:

8|4 - tp(a/A).
In particular 7p| 4 is complete.

Proof . Note that, by construction, a = 1p| 4. Let us first assume that B has a minimal element
bo for inclusion and that by is a closed ball. If by is point (in A), then g + = = by which isolates
acomplete type. Otherwise, let c € Abesuch thatc € b,d € Awithval(d) =rad(b),a’ = np|4
and o/ = res((a’ — ¢)/d). If &’ € res(A)* = res(A), we find e € K(A) with res(e) = o/, i.e.
val(a’ — (¢ +de)) > val(d), so a’ is in the open ball of radius val(d) around ¢ + de e K(M ), a
contradiction. It follows, from Lemma (1.3).3, that (a’ — ¢)/d =4 (a —¢)/d and hence a’ =4 a.
Let us now assume that B does not have a minimal element and that M.z NA = @. For all
b € B, let a, € A belong to b but not to any b’ € B with b’ c b. Then (ap)pep is a pseudo-
Cauchy sequence. If the minimal polynomial of this sequence is not 0, by Corollary (1.9).2,
there exists ¢ € A* = A with a3 ~ ¢, but then c € b for every b € B, a contradiction. It follows
that P = 0. Note also that any a’ = np|, is a pseudo-limit of the a;. By Corollary (1.9).3, we
have a’ =4 a.

Let us now deal with the remaining case. We may assume that there is a ¢ € N,cg N4 and that
the open balls are cofinal in B. Let a’ = np| 4. Foralld € A, we have val(a’-c) > val(d) if and
only the closed ball of radius val(d) around cis in B, equivalently, if val(d) € {rad(b) : b € B}.
In particular, if val(a’ — ¢) € Q ® val(A) = val(A), then the closed ball around ¢ with radius
val(a’ - ¢) is in B and hence so is the open ball around ¢ with radius val(a’ - ¢). But @’ is
not in the open ball around ¢ with radius val(a’ - ¢), a contradiction. It now follows from
Lemma (1.4).3, that (¢’ — ¢) =4 (a - ¢) and hence o’ = Aa. i

We see from the proof that there is a correspondence between the description of the 1-types
over models in algebraic terms and in terms of generics of balls:
1. Generics of closed balls correspond, up to translation and scaling, to residual exten-
sions;
2. Generics of open balls correspond, up to translation, to ramified extensions where the
cut is of the form +;
3. Generics of non empty strict intersections of balls correspond, up to translation, to the
other ramified extensions;



2. Definable sets and swiss cheeses

4. Generics of empty strict intersections of balls correspond to immediate extensions.
We have seen that every 1-type over a model can be described exclusively in terms of balls. It
follows — by some abstract nonsense — that this is also the case of of every definable subset
of K:

Proposition 2.4: Let M be some L-structure and A(x;t) a set of L-formulas. Assume that for ev-
eryp € Sy (M), p|x + p. Thenevery L(M )-formula () is equivalent to a Boolean combination
of formulas from A(z; M).

Definition 2.5: Let K be a valued field.
o A Swiss cheese is a set of the form b~ |U; b; where b is a ball and the b; are finitely many (strict)
subballs of b.
o A Swiss cheese b \ U; b; is nested inside some other Swiss cheese d ~ \U; d; if there exists a j
such that b = d;.

Note that the union of two nested Swiss cheeses is still a Swiss cheese. Similarly, the union
of two Swiss cheeses with a non empty intersection is still a Swiss cheese.

Lemma 2.6: Let K be a valued field. Finite unions of Swiss cheeses are stable under Boolean com-
binations.

Proof . 1t suffices to show that the intersection of two Swiss cheeses is a Swiss cheese and that
the complement of a swiss cheese is a swiss cheese. Let B = b~ U; b; and D = d \ U; d; be
two Swiss cheeses. We have Bn D = (bnd) \ (U;(b; n d) uU; bn d;) where some of the
intersections might be empty. Similarly K \ B = (K \ b) u U; b;. ]

Theorem 2.7 (Holly, 1995): Any definable subset of K in ACVF has a unique decomposition as
a finite disjoint union of non-nested Swiss cheeses.

We say that ACVF is C-minimal.

Proof . Let p(x;s,t,u) == (u=0Aval(z—s) >val(t)) v (u=1Aval(z - s) > val(t)). Note
that for M = ACVF, p(x; M) is exactly the set of all K(M ) balls. Lemma (2.3) implies that
forall p € S;(M), pl, + p. By Proposition(2.4), every definable subset of K is a Boolean
combination of balls. By Lemma (2.6), it is a finite union of Swiss cheese. As noted above, we
can assume that it is a finite disjoint union of non-nested Swiss cheeses.

Uniqueness of the decomposition follows immediately from the fact whenever a Swiss cheese
is included in a finite disjoint union of non-nested Swiss cheeses, then it is included in one
of those Swiss cheeses. ]

We will now describe the structure induced on the residue field and the value group.
Definition 2.8: Let T be an L-theory and D be a &-definable set. We say that D is stably embedded
if for every M = T and every L(M )-definable X ¢ D", X is L(D(M))-definable.

It then follows that for any A ¢ M, the £(A)-induced structure on D is a definable enrich-

ment of the £-induced structure.

Definition 2.9: Let T' be an L-theory and assume we have some L'-structure D interpretable in
T. We say that D is a (stably embedded) pure L-structure if:
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D is stably embedded;
o The L-induced structure on D is exactly the L'-structure.

Proposition 2.10: Let M = ACVF and A < M. If X c k" is A-definable, then it is L,s(k(A))-
definable. In particular, the residue field k is a stably embedded pure ring.

Proof . By quantifier elimination, and since for any M £ ACVF, L,;(k(A))-definable sets
are closed under Boolean combinations, it suffices to consider atomic formulas. So we may
assume X is defined by R(Z,1(P(a),Q(a)),a) = 0where R € Z[Z, 7, %], P, QZ[t] are tuples,
a € K(A) is atuple and @ € k(A) is a tuple. We see immediately that this is equivalent to an
Lg(k(A))-formula. ]

Proposition 2.11: Let M = ACVF and A < M. If X c I', is A-definable, theniitis Log(I'so (A))-
definable. In particular, the value group T is a stably embedded pure ordered (semi-)group.

Proof . As above, it suffices to consider atomic formulas. So we may assume X ¢ I' is defined
by L(Z,val(P(a)),7) 00 where L is a Z-linear function, P € Z[%] is a tuple, a ¢ K(M) is a
tuple, v € I'oo (M) is a tuple and O € {=, <}. We see immediately that this is equivalent to an
L(k(M))-formula and that if there are no parameters, it is equivalent to on Le-formula. O

Definition 2.12: Let T be a theory, two @-definable sets D1 and D5 are orthogonal if any definable
set X ¢ D" x Dy? is a finite union of definable boxes of the form Y1 x Y, where Y; € D",

Proposition 2.13: The value group I, and the residue field k are orthogonal.

Proof . Since finite unions of boxes are closed under Boolean combinations, it suffices to con-
sider atomic formulas. But these are easily seen to either be of the form I'}' x Y5 for some
Y, c k™ or Y7 x k'™ for some Y; € T'. O

We conclude by describing the algebraic closure in algebraically closed valued fields:

Proposition 2.14: Let A € M = ACVF. We have acl(A) = K(A)*Uk(A)*uQ&T'(A)u{oo}.

Proof . The fact that k(acl(A)) c k(A)*and I'(acl(A)) € Q®I'(A) follows immediately from
Propositions (2.10) and (2.11) (and the characterization of the algebraic closure in ACF and
DOAG).

Claim 2.15: Let f : k" x '} - K be definable. Then f (k™ x I'}) is finite.
Proof . If f(k™ x I') is infinite, by Theorem (2.7), it contains a ball. In particular, for any

M over which f is definable, it is in bijection with K(M). But there exists N > M with
[k(N)|, T'oo (V)| < |[K(N)|. For example, take any maximal completion of M. O

Claim 2.16: K(acl(A4)) c K(A)?*

Proof . 1t follows from Claim (2.15), that K(acl(A)) ¢ K(acl(K(A))). Now, by Lemma (2.3),
any type over K(A)? concentrating on K is the generic of some chain of nested ball. All of
these types are not algebraic except for the generic of closed balls of infinite radius, a.k.a.
points of K(A)?. O
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This concludes the proof ]

Remark 2.17: It follows from Proposition (2.14), that there are no definable section of the val-
uation or the residue map in ACVF. Note that C-minimality also prevents the existence of
definable angular components. Indeed, the fibers of an angular component are of the form
U~er by where b, is an open ball with val(b,) = ~. This set is not a finite union of Swiss
cheeses.

3. Imaginaries
Let us start by recalling various definitions and constructions pertaining to imaginaries.

Definition 3.1: A theory T is said to eliminate imaginaries if for every &-definable sets X C'Y x Z,
there exists an @-definable map f : Y — E such that, forall y;,y2 € Y:

Xy, = Xy, ifand only if f(y1) = f(y2),
where X, :={z€Z:(y,z) e X}.

We now recall Shelah’s construction to add in imaginaries as actual points:

Definition 3.2: Let T be an L-theory.
o Wedefine the enrichment L by adding a sort E,., for each L-formula (v, y) and map
Jo(ay) Sy = Ex, where Sy is the product of sorts over which y ranges.
o Wedefine T := T U { fy (2. Surjective AYy1y2, (Y, o(z;91) < 0(7,92)) < f(y1) =
f(y2) : p(x3y) L—formula}.

Lemma3.3: Let T be an L-theory:
1. Forevery M & T, there is a unique M4 = T°Y such that M|, = M.
2. For every L-formula p(x) where x is a tuple of L-variables, there exists an L-formula
Y(x) with T* -V, o(x) < ¥ (x).
3. T4 eliminates imaginaries.

Lemma3.4:Let M = T and X be M-definable. Let o(x;y) and m € M a tuple, be such that
X = @(x;m). Then "X " := dcl®d(f,(4.y) (m)) does not depend on the choice of ¢ or m.

The set "X " is called the code of X.

Lemma3.5: Let T be an L-theory. The following are equivalent:
1. T eliminates imaginaries;
2. Forevery M £ T and e e m®Y, e € dcl®d(dcl®d(e) n M);
3. Forevery M £ T and M-definable X, X is "X ' n M-definable.

Let us now consider imaginaries in algebraically closed fields.
Remark 3.6: Let M £ ACVF be R¢-saturated and b be a ball of M with b ndcl(@) = @ and

rad(b) ¢ dcl(@). Then "b"'n M = dcl(rad(b)) and b is not rad(b)-definable. So ACVF (in the
three sorted language) does not eliminate imaginaries.



3. Imaginaries

We can, however, describe a — in a sense, minimal — set of imaginaries which is sufficient
to eliminate all imaginaries.

Definition 3.7 (Geometric sorts): We define:

¢ S, = GL,(K)/GL,(0);

e T, := GL,(K)/GL,,(0O), where GL,, ,(O) is the subgroup of GL,,(O) of matrices
whose coordinate-wise reduction modulo 90 has zeros on the last column, except for a 1
on the diagonal.

« We denote by LY the language with sort K, S,, and T,, for all n € Z. We have the ring
language on K and maps s,, : GL,,(K) - S,, and t,, : GL,(K) — T,,.

Every valued field can be naturally made into an £9-structure. We denote by G := {K} u
{Sn, Ty : n > 1} the set of geometric sorts.

Remark 3.8:
* S, is the moduli space for rank n free O-submodules of K".
o T) = Uses, (s/Ms) ~ Ms.
e S1=K*/NO"=T.
Tp =K*/(1+971) =RV.
« The set of closed balls with finite radius can be @-definably embedded in Ss;
« The set of open balls with finite radius can be @-definably embedded in T;

The last result whose proof we'll sketch is:

Theorem 3.9 (Haskell-Hrushovski-Macpherson, 2006): The £L9-theory ACVFY of algebraically
closed valued fields eliminates imaginaries.

The proof we will follow is more recent. It is a improvement of Johnson’s on a proof of
Hrushovski. Let us first recall the notion of definable types since they will play a central
role in classifying imaginaries in ACVF:

Definition 3.10: Let M be an L-structure, A € M and p € S, (M ). We say that p is A-definable
if for every L-formula ¢(x;y), there exists a L(A)-formula §(y) =: d,x p(x;y) such that for all
tuple m € MY,

©(x;m) e pifand only if M = 6(m).

When p € S;(M) is definable. The set "p" := Uy(gyy) "dp @(2; M) is called the code of p.
We say that a sort R is dominant in 7" if for all M &= T', M < dcl(R(M)).

Lemma 3.11 (Hrushovski): Let T' be an L-theory with the sort R dominant. Assume:
1. forevery M = T and non-empty M-definable X c R, there exists an acl®d("X ")-definable
p € Sp(M) which concentrates on X;
2. for every definable type p € S(M), pis acl®d("p") n M-definable;
3. forevery finite X € M", X is "X "' n M-definable.
Then T eliminates imaginaries.

Some of these hypotheses are easier than others to prove in ACVFY. The density of definable
types — Hypothesis Lemma (3.11).1 — is an easy consequence of C-minimality.
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3. Imaginaries

Lemma 3.12: Let b be a ball in some M = ACVFY. Then
1. the type m,, is definable;
2. rnb‘M‘l — rb‘ll

Proposition 3.13: For any definable & + X ¢ K in some M = ACVFY, there exists p € Sk (M)
which is acl®d(" X ")-definable and concentrates on X.

Proof . Let b be any outer ball of a swiss cheese appearing in the canonical decomposition of
X as a finite union of disjoint non nested swiss cheeses. Then b is acl®d(" X ")-definable. So
mly is acl®d("X ") and it concentrates on X. ]

The computation of the canonical basis of types, and the proof that it is inter-definable with
its geometric part — Hypothesis Lemma (3.11).2 — is much more involved. Hrushovski’s
proof of that fact involves stably dominated types and the canonical representation of de-
finable types as limits along the value group of stably dominated types. Instead, we follow
Johnson’s more hands on approach. The following notion plays a crucial role:

Definition 3.14: Let K be a valued field and V' be a K -vector space. A valuation on V' is a map
v:V N {0} > Xy U {oco} where Xy is a totally ordered set with a free T i -action such that:

o forally<delgand o <7 € Xy, vyo <75

o forall \ e K and x € V, v(Ax) = val(\)v(x);

e forallz,y € V ~ {0}, v(z +y) > min{v(z),v(y)};

e v(0) = oo.
When Xy is ' i acting on itself by multiplication. We say that V' is strictly valued.

As always, we set co > 3y and cox = xoo = co. Note that a valuation on V' is determined (up
to isomorphism of /) by the relation z|y defined by v(z) < v(y).

Definition 3.15: Let K be a valued field and (V,v) be a valued K-vector space. For all o € v(V'),
define Vsg := {x € V :v(z) 2 o} and Vi, == {x € V : v(x) > o}. Both are O-modules and
Vso/Vse is a k-vector space.

We fix MY = ACVFY. When all the data required to define a valued K-vector space (V, v) is
definable, we say that (V, v) is a definable valued K-vector space. The first step to encode the
canonical bases of definable types is to see that definable types are completely determined by
a collection of definable valued vector spaces:

Lemma 3.16: For every p € Sn(MY) and d € Zs, there exists a "p’-definable valuation vg on

K@ D™ such that p is completely determined by the sequence of the vg.

Proof .let p € Sgn (M9) definable. For every d € Zsg, we define K(4[ X ] := {Xi<aai Tl X;.j }.
We identify K[ X ] with K"(**1)_ Forall P, Q € Kq[ X], define P|,Q as p(x) + val(P(x)) <
val(Q(z)). It is quite obvious from quantifier elimination that the vg characterize p. ]

We continue by encoding definable valuations on K" in finite collections of definable O-
submodules of K".

II



3. Imaginaries

Lemma3.17: Let v be a definable valuation on K". There exists, at most n, "v'-definable O-
submodules of K™ which completely determine v.

Proof . The crucial point is the following:

Claim 3.18: Each T"-orbit in v(K™) contains a "v'-definable element.

Now let ; € v(K™) be "v'-definable elements in each orbits. Then v is entirely determined
by the R; := {x ¢ K" : v(x) > 7, }, which are indeed O-submodules of K". o

In turn, O-submodules of K" give rise to definable strict valuations:

Lemma3.19: Let R < K" be a definable O-submodule. There exists an "R’-definable K-vector
space V' < K" and an "R’-definable strict valuation v on V, and a " R'-definable k-vector space
W < Vso/Vig such that R is completely determined by the triple (V, v, W).

Proof . Let V' be the K-span of R. For all x € V, we define v(x) := sup{val(\) : x € AR}. We
have V.o < R < V59 and hence R is entirely determined by its image in V5/V%o. O

Let us now encode definable strict valuations:

Lemma 3.20: Let v be a definable strict valuation on some definable K -vector subspace V' < K".
There exists a € K" and s € S; both "v'-definable such that v is as-definable and such that V([ V-
is as-definably isomorphic to s/9Ms.

Proof . Let W := {x € V : v(x) = co}. This is a K -vector subspaceof V. We then find a "W -
definable basis a of W and a "V "W -definable basis a’ of V/WW. So we may assume that
W =0and V = K'. But since there are maximally complete models of (any completion of)
ACVF, K!, v is definable isomorphic to K!, val. In particular, V5 is definably isomorphic to
Ol ie. itis alattice s € S; and Vao/Vao = s/Ms. O

There remains to encode k-vector spaces W < s/9s for any s € S;,:

Lemma 3.21: Let W be a k-vector subspace of s/9s for some s € S,,. Then there exists a "W -
definable tuple a € U,, T, such that W is a-definable.

Therefore, we have proved:

Proposition 3.22: Any definable p € Sgn(M9) is "p" n MY-definable.

To conclude, we have to code finite sets of geometric tuples. This is also surprisingly hard.
The proof in the original Haskell-Hrushovsi-Macpherson paper is over five pages long. Once
again, we follow Johnson’s alternative argument. His proof requires some more advanced
model theoretic technonology:

Definition 3.23: Let M be an L-structure and A ¢ M.
e Let f: X - Y and p € Sx(M) be A-definable. We define f.p as the A-definable type
whose definition scheme is given by d s, ,yp(y,t) = dpxe(f(x),t).
o Let p € Sp(M)and q € Sy(M). Assume p and q are A-definable. We define p ® q €
S(M) as the A-definable type whose definition scheme is given by dyeqzy ©(z,y,t) =
dp$(dqy(p(xv Y, t))
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A. Eliminating quantifiers with more algebra

o We say that p € S(M) is generically stable if it is definable and for every definable type
qeS(M),p®q=q®p.

Note that forall A ¢ C ¢ M, b = f.p|o if and only if b = f(a) for some a = p|- and
(a,b) E p®q|sifandonlyifa = p|-andb & ¢|-,. When f,pisarealized type — equivalently
there exists some ¢ € dcl(A) such that forall a £ p| 4, f(a) = ¢ — we write f.p =c.

Proposition 3.24: For all M = ACVFY and a € G(M), there exists an a-definable generically
stable type p, € Sknxin (M) and a @-definable map f such that f.p = a.

Proposition 3.25: For all M = ACVFY and X a finite set of tuples in G(M), X is "X n G(M)-
definable.

Proof . We may assume that the elements (a; );<q of X are identically sorted tuples. By Propo-
sition (3.24), we find stably dominated p; € Sgmxin (M) which are a;-definable and f such
that f.p; = a;. Symmetric polynomials provide us with a @-definable map from & : (K" x
k™)? - K! x k" whose fibers correspond to enumerations of the same set of size at most d.
Let g = 6.(®; p;). Then gis "X '-definable and there exists g @-definable such that g,.q = X.
By Proposition (3.22), g, and hence X, is "X ' n G(M )-definable. i

A. Eliminating quantifiers with more algebra

Theorem A.1: Let (K, val) be a valued field, L > K a finite extension and (O;); enumerating all
valuation rings on L. Let k; denote the residue field of O; and I'; its value group. Then [L : K| =
p? Yilki - ki ][I : Tk ], where d € Zsg and p is the residue characteristic of K, if it is positive,
and 1 otherwise.

Theorem A.2 (Conjugation theorem): Let (K, val) be a valued field and L > K be an algebraic
extensions. Let O1 and Oy be two valuations rings on L extending O. Then, there exists o €

Aut(L/K) such that O = 0(O1).
Let us now (re-)prove quantifier elimination for ACVF.

Proof (Theorem (1.2)). Let M, N £ ACVF, A< M and f : A - N an L-embedding. Assume
N is |M|*-saturated. Our goal is to extend f to M. Asbefore, since f has a (unique) extension
to AuFrac(K(A)) uFrac(k(A)), so we may always assume that K(A) and k(A) are fields.

Claim A.3: Forevery v e T'(A)nQeval(K(A)), we may extend f to some C with~y € val(K(C)).

Proof . Let n € Z( be the order of v in I'(M ) /val(K(A)) and ¢ € K(A) be such that ny =
val(¢). Find a € K(M) such that " = cand b € K(N) such that b” = f(¢). Note that by
minimality of n, the minimal polynomial of a over K(A) is P := X" — ¢ and the minimal
polynomial of b over f(K(A))is f(P)=X" - f(c). We extend f|k to g : K(A)[a] - N by
sending a to b. Then g| is an £,,-isomorphism.

Since [K(A)[a] : A] = n < [val(K(A)[a]) : val(K(A))], by Theorem (A.1), val(K(A)[a]) is
generated by 7 over val(K(A)), res(K(A)[a]) = res(K(A)) and O(K(A)[a]) is the unique
valuation ring of K(A)[a] extending O(K(A)) on K(A). So O = ¢g~}(©) and hence there
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exists two isomorphisms 7 : val(K(A)[a]) - T'w (V) and p : res(K(A)[a]) = res(K(A)) -
k(N) with valo g = 7o val and res o g = p ores. Computing, we see that 7|, k(4)) =
flual(k(4)) and that 7 = restr fres(K(A)). Since the only automorphism of Q ® val(K(A))
over val(K(A)) is the identity, 7 and f|._ coincide when both are defined. It is now straight-
forward to check that the natural extension of g to the structure generated by a over A ex-
tends f and is an £y p-isomorphism. Note that K(A)[a] is a field so compatibility with r is
equivalent to compatibility with res. O

Claim A.4: For every o € k(A) nres(K(A))? we may extend f to some C' < M with « €
res(K(C)).

Proof . Let P € K(A)[ X ] be an exact lifting of the minimal polynomial of o over res(K(A)),
a € K(M)and b € K(N) such that P(a) =0 = f(P)(b) and val(b) = f(a) = f(val(a)). We
extend f|k to g: K(A)[a] - N by sending a to b. Then gl is an L,4-isomorphism.

Since [K(A)[a] : A] = n < [res(K(A)[a]) : res(K(A))], by Theorem (A.1), res(K(A)[a])
is generated by « over res(K(A)), val(K(A)[a]) = val(K(A)) and there exists two isomor-
phisms 7 : val(K(A4)[a]) = val(K(A)) = T'w(N) and p : res(K(A)[a]) = res(K(A)/«a) —
k() with valog = Tovaland resog = pores. Computing, we see that 7 and f| coincide, and
since p sends a = val(a) to val(b) = f(«), pand f| also coincide. It is now straightforward
to check that the natural extension of ¢ to the structure generated by a over A extends f and
is an Ly p-isomorphism. O

Claim A.5: We can extend f to some C < M with K(C)* c C.

Proof . By the two previous claims, we may assume that val(K(A4)*) nT's(A) < val(K(A4))
and that res(K(A4)*) nk(A) ¢ res(K(A)). We can extend f|k to an L,,-isomorphism g :
K(A)® - N. By Theorem (A.2), we may assume that g~1(O) = O. Since val(K(4)*) n
I (A) cval(K(A)) and res(K(A)*) nk(A) c res(K(A)), the isomorphisms induced by g
on k and I, coincide with f. So the natural extension of g to the structure generated by A
and K(A)* extends f and is an £y p-isomorphism. O

So we can always assume that K(A)* c A.

Claim A.6: For every v € I'( M), we may extend f to some C' < M with ~y € val(K(C)).

Proof . We may assume that v ¢ val(K(A)). Let a € K(V) be such that val(a) = 7. Let us now
prove that for all P € K(A)(X), rv(P(a)) = arv(a)’ where a € rv(K(A)) and [ € Z. Since
rv is multiplicative and K(A)®* = K(A), we may assume that P = X - c. If val(c) < val(a),
we have rv(P(a)) = rv(-c) € rv(K(A)). If val(¢) < val(a), we have rv(P(a)) = rv(a).
It follows that val(K(A)(a)) = val(K(A)) + Z~ and res(K(A)(a)) = res(K(A)) since 7 ¢
Qe val(K(A)).

Let n be the order of v in I'(M)/T'(A). Let n € I'(N) be such that nn = f(m~). If n = oo,
by saturation, we may also assume that, for all § € I'(A4), f(4) < nif and only if § < 7. Let
b € K(NNV) be such that val(b) = n. We extend f to some g sending a to b. By the above
computation, g|y is a ring isomorphism and g respects both val and r. Since the residue field
does not grow, g|, is aring isomorphism. Since v and eta have the same order, and when this
order is infinite, they realize the same cut (over f), g is an ordered group isomorphism. ¢
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Claim A.7: For every a € k(M ), we may extend f to some C < M with o € val(K(C)).

Proof. We may assume that « ¢ res(K(A)). Let a € K(NV) be such that res(a) = a. Let us
now prove that for all P € K(A)(X),rv(P(a)) =nQ(a)wheren erv(K(A))and Q €
resf(K(A))(X). We may assume that P = X — ¢ with ¢ € K(A). If val(¢) < 0,rv(a—¢) =
rv(—c) € rv(K(A)). If val(c¢) > 0, since rv(a — ¢) = res(a — ¢) = a — res(c). 1t follows that
val(K(A)(a)) = val(K(A)) and res(K(A)(a)) =res(K(A)) ().

Let R be the minimal polynomial of « over k(A). Let 8 € k(IN) be a root of f(R). Let
b € K(N) be such that res(b) = 5. We extend f to some g sending a to b. By the above
computation, g|y is a ring isomorphism and g respects both val and r. Since the value group
does not grow, g is an ordered group isomorphism. Since o and 3 have the same minimal
polynomial, g|, is a ring isomorphism. O

We can now assume that I'o, (M) < val(K(A)) and k(M) < res(K(A)). Sorv(K(M)) ¢
rv(K(A4))

Claim A.8: For every a € K(M ), we may extend f to some C < M with a € K(C).

Proof . For every ¢ €e K(A), we have rv(a—c) e rv(K(M)) =rv(K(A)). Let e € K(A) be such
thatrv(a - ¢) =rv(e), ie. val(a - (c+¢€)) > val(a - ¢). So, by transfinite induction, we can
build a maximal pseudo-Cauchy sequence a; € K(A) with a € plim; a;. Forall P e K(A)(X),
let us now prove that rv(P(a)) = rv(P(a;)) for sufficiently large i. We may assume P = X —¢
for some ¢ € K(A). By maximality, ¢ ¢ plim, a; and hence we have rv(a — ¢) = rv(a; - ¢) for
sufficiently large i.

By saturation, we find b € K(N) with f(a;) ~ b. By the above computation, the extension g
of f sending a to b is an Ly r-isomorphism. O

This concludes the proof. ]

B. The leading term language
Using leading terms, we can combine Lemmas (1.3) and (1.4):

LemmaB.i: Let M = ACVF, A < K(M) and o € rv(M). Let P = ¥, p; X" € A[X] have
minimal degree among those polynomials such that val(P(c)) > min;(val(p;) + ival(«)); or
P = 0 if such a polynomial does not exists. Then, for every Q = ¥; ¢: X" € O [ X] with degree
smaller than P and every a € res ' (a),

v(Q(a)) = Y rv(g)a’ £ 0,
iEIo
where I := {i : val(g;) + ival(«) is minimal}. If deg(P) < min{n > 0 : nval(«) € val(A) }'—
or P =0 — then I is a singleton.
Moreover, there exists a € v~ " (/) such that P(a) = 0.

1. Since, val(P(c)) > min;(val(p;) + ival(«)), there are some ¢ < j such that val(p;) + ival(a) = val(p;) +
tval(e) and hence (j — i)val(a) = val(p:) — val(q;) where j — i < deg(P). It follows that we always have
deg(P) > min{n > 0 : nval(a) € val(A)}.
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Proof . By minimality of P, we have val(Q(a)) < min;(val(g;) +ival(c)) = min; val(ga®) <
val(Tier, ¢ia’) < val(Q(a)). 1t follows that all these terms are equal and that rv(Q(a)) =
1V(Tier, i0") = Yier, tv(gi)a’ # 0. If Iy is not a singleton, there arei < j with val(g;) +
ival(a) = val(g;) + ival(a) and hence (j - i)val(a)) = val(g;) — val(g;) € val(A) where
j—1<deg(Q) < deg(P). It would follow that deg(P) > min{n > 0 : nval(«a) € val(A)}.

Let P = c[];(X - e;), where c € A and assume that there are no e; with rv(e;) = . Let
Jo = {j : val(e;) > val(a)}, Jo = {j : val(e;) = val(a)} and Joo := {j : val(e;) < val(a)}.
For any a € rv (), val(P(a)) = val(c) + ety val(a) + ¥jeg, 1v(a — ej) + valje ., val(e;).
Note that for any j € J,, since rv(e;) # o, val(a) = val(a) = val(a — ;) = val(e;). It follows
that val(P(a)) = val(c) + ¥ ;e .. val(e;) + (d - |Jo|)val(cr), where d = deg(P).

Note, moreover, that p; = ¢ ¥ j=q—; [1je €j and thus val(p;)-val(c) > min j_4_; ¥ ;e val(e;) >
ming ji-g_; Xjesong val(e;) + X, val(a). 1t follows that val(p;) + ival(a) > val(c) +
et val(e;) + (d = |J| = |Joo N J| + |J N Joo|)val(a) = val(P(a)). It would follow that
val(P(a)) = min;(val(p;) + ival(«)), a contradiction. ]
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